РАСЧЕТ СЕТЕВОГО ГРАФИКА ТАБЛИЧНЫМ СПОСОБОМ

Рассмотренный расчет сетевого графика сделан с целью выявления сущности расчета сети и вывода соответствующих формул. Обычно данные такого расчета вносят в такую форму:

Все события в графике должны нумероваться так, чтобы номер предшествующего события был меньше последующего. Номера событий определяют шифры работ, которые заносятся во вторую графу таблицы в возрастающем порядке, т. е. сначала выписываются все работы, выходящие из первого события, затем из второго и т. д. В первую колонку таблицы вносят количество работ, предшествующих данной работе, т. е. количество работ, входящих в начальное событие рассматриваемой работы. Одновременно в третьей колонке проставляют продолжительность каждой работы в принятых единицах времени (день, неделя). После заполнения трех первых колонок переходят к определению Тр.н и Гр.о всех работ, используя формулы (1), (2), (4) и (5). Данные этого расчета проставляют в графы 4 и 5 (см. выше форму).

Максимальная величина ранних окончаний работ определяет продолжительность критического пути и срок строительства; этот показатель и будет конечным сроком, т, е. если вести расчет от начального события до конечного по максимальным значениям ранних окончаний работ, то определится общая продолжительность строительства.

В колонке 7 формы напротив шифра завершающей работы записывается ее поздний срок окончания, который должен равняться раннему сроку окончания этой работы, как конечной, т. е. лежащей на критическом пути.

Определив поздний срок конечной работы и ведя расчет снизу вверх по колонкам, используя формулы (7) и (8), подсчитывают самые поздние сроки начала и окончания всех остальных работ. Результаты этого подсчета заносятся соответственно в колонки 6 и 7 формы.

После выполнения этих операций можно легко определить линию критического пути. Работы, которых ранние начала и окончания соответственно равны поздним началам и окончаниям, лежат на критическом пути. Эти работы отмечаются в графе 10 формы буквой К.

Правильность установления критического пути проверяется расчетом резервов времени по формулам (9) и (10), результаты которого заносятся в колонки 8 и 9 формы. У работ, лежащих на-критическом пути, общие и частные резервы времени равны нулю.

Таблица 60

Расчет сетевого графика

В табл. 60 дается пример расчета сетевого графика, сведенного в табличную форму, применительно к сети, показанной на рис. 121.

Как указывалось ранее, знание резерва времени работ, не лежащих на критическом пути, позволяет более целеустремленно и рационально использовать материально-технические ресурсы и кадры для выполнения однородных критических работ.

Частный (свободный) резерв, если его используют на данной работе без превышения расчетной величины, не вызывает изменения частных резервов последующих работ. Использовать частный резерв можно на любой из работ или одновременно на нескольких работах, но без превышения его величины. На рис. 122 показаны все частные резервы в соответствии с данными произведенного ранее расчета. Так, по работе 2—9 имеется частный резерв 5 дней, который можно использовать на этой работе, на работе 2 — 8 или на обеих работах одновременно.

Частный резерв времени не может быть передан последующим работам, и, как правило, его следует использовать на предыдущих работах, так как продолжительность любой некритической работы может меняться в пределах частных резервов. Отсюда вытекает, что оптимизация использования ресурсов может в основном осуществляться за счет использования частных резервов. Сумма частных резервов работ данной цепи составляет ее полный (общий) резерв (рис. 123).

Рис. 122. Частные резервы времени к сетевому графику, показанному на рис. 121.

Рис. 123. Зависимость между общим резервом цепи 1—3—4—5—9 и частными резервами этой же цепи.

Если простейшая цепь (путь) заканчивается связью (фиктивной работой), для которой расчет определяет частный резерв, то его следует передать предшествующим работам, так как фиктивная работа никаких резервов иметь не может.

Практика показывает, что в сетевых графиках, составленных на отдельные объекты, частные резервы времени составляют примерно 60% времени, нужного для выполнения всех строительномонтажных работ.

Полные (общие) резервы времени по отдельным работам показаны на рис. 124. Они устанавливают временную зависимость между критическими и некритическими работами, так как по мере увеличения времени выполнения некритической работы на величину, превышающую общий резерв, критический путь увеличивается на время превышения.

На рис. 125 общий резерв времени работы 2 — 9 показан в линейном изображении и равен 5 дням.

Общий резерв времени данной работы равен суммы частных резервов работ, начиная с рассматриваемой работы и кончая той, которая заканчивается событием, лежащим на критическом пути.

Рис. 124. Общие резервы времени к сетевому графику, показанному на рис. 121.

Рис. 125. Общий резерв времени работы 2 — 9 в линейном изображении.

Так как работа 2 — 9 заканчивается событием, находящимся на критическом пути, то

Если общий резерв времени по работе, лежащий на данной цепи, используют полностью для какой-либо одной работы, то-для других работ этой цепи никаких резервов не останется. Здесь под цепью подразумевается путь последовательных работ до конечного события или до события, которым заканчивается одна из работ, примыкающая к критическому пути.

Так, например, работа 3 — 4 имеет общий резерв времени в 6 дней, а работа 4 — 5 — в 1 день. При использовании на работе 3 — 4 общего резерва в 6 дней для работ 4 — 5 и 5 — 6 этой цепи, оставшихся до критического пути, общие и частные резервы времени будут равны нулю, что и подтверждается ранее рассмотренными формулами.

Общий резерв времени характеризует потенциальные возможности некритических работ по отношению к продолжительности: критического пути и может быть использован для оценки создавшейся ситуации на определенный срок.

Сумма нормальной продолжительности работы и частного-или общего резерва времени определяет наибольшую допустимую продолжительность этой работы.

Таким образом, резервы времени позволяют производить маневрирование по ходу строительства:

уменьшать или увеличивать интенсивность использования ресурсов (за счет изменения сроков их использования);

сдвигать время использования ресурсов в пределах резерва; добиваться равномерного использования ресурсов по работам, лежащим на различных цепях.

В то же время следует помнить о том, что при полном использовании резервов времени мы понижаем надежность метода критического пути, так как при малейшей задержке в выполнении работы, не имеющей резерва, трудно найти нужный выход.

После окончательного расчета сети табличным способом необходимо «привязать» сетевой график к календарю, т. е. каждому событию определить дату его свершения. Привязку обычно производят по датам раннего начала работ 1—2, 2—7, 7—8, лежащих на критическом пути, и определяют так: если работу 1—2 начать 2 января, то для установления начала работы 2—7 нужно по календарю 3 дня и приступить к ней на четвертый день, т. е. 5 января и т. д.

Событие 9 наступает через 18 дней, что дает со 2 января дату 26 января — начало работы 9—10 (при пятидневной рабочей неделе).

Календарные данные для работ, лежащих на критическом пути сетевого графика, показанного на рис. 121, занесены в графу 10 расчетной табл. 60.